The ligand-regulated PAS domains are one of the most diverse signal-integrating domains found in proteins from prokaryotes to humans. By biochemically connecting cellular processes with their environment, PAS domains facilitate an appropriate cellular response. PAS domain-containing Kinase (PASK) is an evolutionarily conserved protein kinase that plays important signaling roles in mammalian stem cells to establish stem cell fate. We have shown that the nuclear translocation of PASK is stimulated by differentiation signaling cues in muscle stem cells. However, the mechanistic basis of the regulation of PASK nucleo-cytoplasmic translocation remains unknown. Here, we show that the PAS-A domain of PASK contains a putative monopartite nuclear localization sequence (NLS) motif. This NLS is inhibited in cells through intramolecular association with a short linear motif, termed the PAS Interacting Motif (PIM), found upstream of the kinase domain. This interaction serves to retain PASK in the cytosol in the absence of signaling cues. Consistent with that, we show that metabolic inputs induce PASK nuclear import, likely by disrupting this association. We suggest that a route for such linkage may occur through the PAS-A ligand binding cavity. We show that PIM recruitment and artificial ligand binding to the PAS-A domain occur at neighboring locations that could facilitate metabolic control of the PAS-PIM interaction. Thus, the intramolecular interaction in PASK integrates metabolic signaling cues for nuclear translocation and could be targeted to control the balance between self-renewal and differentiation in stem cells.
Signal-regulated Unmasking of Nuclear Localization Motif in the PAS Domain Regulates the Nuclear Translocation of PASK.
PAS结构域中核定位基序的信号调控揭示调节PASK的核转位
阅读:4
作者:Xiao Michael, Dhungel Sajina, Azad Roksana, Favaro Denize C, Rajesh Rajaian Pushpabai, Gardner Kevin H, Kikani Chintan K
| 期刊: | Journal of Molecular Biology | 影响因子: | 4.500 |
| 时间: | 2024 | 起止号: | 2024 Feb 1; 436(3):168433 |
| doi: | 10.1016/j.jmb.2023.168433 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
