Chemically Induced Cell Wall Stapling in Bacteria.

化学诱导细菌细胞壁钉合

阅读:4
作者:Rivera Sylvia L, Espaillat Akbar, Aditham Arjun K, Shieh Peyton, Muriel-Mundo Chris, Kim Justin, Cava Felipe, Siegrist M Sloan
Transpeptidation reinforces the structure of cell-wall peptidoglycan, an extracellular heteropolymer that protects bacteria from osmotic lysis. The clinical success of transpeptidase-inhibiting β-lactam antibiotics illustrates the essentiality of these cross-linkages for cell-wall integrity, but the presence of multiple, seemingly redundant transpeptidases in many species makes it challenging to determine cross-link function. Here, we present a technique to link peptide strands by chemical rather than enzymatic reaction. We employ biocompatible click chemistry to induce triazole formation between azido- and alkynyl-d-alanine residues that are metabolically installed in the peptidoglycan of Gram-positive or Gram-negative bacteria. Synthetic triazole cross-links can be visualized using azidocoumarin-d-alanine, an amino acid derivative that undergoes fluorescent enhancement upon reaction with terminal alkynes. Cell-wall stapling protects Escherichia coli from treatment with the broad-spectrum β-lactams ampicillin and carbenicillin. Chemical control of cell-wall structure in live bacteria can provide functional insights that are orthogonal to those obtained by genetics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。