Meloxicam Alleviates Oxidative Stress Through Nrf2/HO-1 Activation in Bovine Endometrial Epithelial Cells.

美洛昔康通过激活牛子宫内膜上皮细胞中的 Nrf2/HO-1 来缓解氧化应激

阅读:4
作者:Cui Luying, Duan Jiangyao, Mao Peng, Zhong Jingyi, He Sasa, Dong Junsheng, Liu Kangjun, Guo Long, Li Jianji, Wang Heng
Meloxicam has been identified as an adjuvant therapeutic component in the management of bovine uterine diseases, exhibiting anti-inflammatory and antioxidant effects. However, the mechanisms underlying its antioxidant actions in the context of bovine uterine diseases remain incompletely understood. The objective of this research was to determine whether meloxicam exerts its antioxidant effects through the Nrf2/HO-1 signaling pathway. By employing N-acetylcysteine (NAC), a scavenger of reactive oxygen species (ROS), along with inhibitors directed against heme oxygenase-1 (HO-1) or nuclear factor erythroid 2-related factor 2 (Nrf2), we investigated the dynamic changes in oxidative stress markers (ROS and malondialdehyde) and antioxidant indices (comprising catalase, superoxide dismutase, and glutathione), as well as the expression profiles of Nrf2 and inflammation-associated genes and proteins in bovine endometrial epithelial cells (BEECs) subjected to lipopolysaccharide (LPS) stimulation. As a result, meloxicam alleviated the LPS-induced elevation of oxidative stress marker levels and the reduction in antioxidant enzyme activities and antioxidant substance contents in BEECs. Compared to NAC, meloxicam demonstrated superior efficacy in activating the Nrf2 pathway, with the promotion of NRF2 expression (~1.6-fold) and nuclear translocation. The pretreatment of cells with HO-1 or Nrf2 inhibitors markedly attenuated the antioxidant activity of meloxicam. In summary, meloxicam primarily alleviates LPS-induced oxidative stress through the activation of the Nrf2/HO-1 pathway in BEECs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。