Protective effects of Atractylodes macrocephala polysaccharides on acetaminophen-induced liver injury.

白术多糖对乙酰氨基酚引起的肝损伤的保护作用

阅读:4
作者:Wu Jiali, Jia Biao, Gong Shuai, Li Yangpeng, Wang Jiaqi, Huang Yuqiao, Guo Jiao
BACKGROUND: Drug-induced liver injury (DILI) is a major clinical concern due to its unpredictable nature and lack of effective therapeutic options. METHODS: This study investigated the hepatoprotective effects of Atractylodes macrocephala polysaccharides (AMPs) in a mouse model of acetaminophen (APAP)-induced liver injury. Mice were pretreated with AMPs for 7 days prior to APAP challenge, and liver injury was evaluated through histopathology, serum biochemistry, molecular assays, and gut microbiota analysis. RESULTS: AMPs treatment significantly reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels compared to the APAP group (p < 0.05). Hepatic oxidative stress was alleviated, as indicated by increased levels of glutathione (GSH, p < 0.05) and superoxide dismutase (SOD, p < 0.05), and reduced malondialdehyde (MDA, p < 0.05). AMPs also suppressed inflammatory cytokines, including Il-1β, Tnf-α, Il-6, and Nlrp3 (p < 0.05), and modulated apoptosis-related proteins by downregulating Bax and upregulating Bcl-2 and Bcl-xl expression (p < 0.05). Furthermore, AMPs improved gut microbiota diversity and enriched beneficial genera such as Roseburia, as revealed by 16S rDNA sequencing. Fecal microbiota transplantation from AMPs-treated mice replicated these hepatoprotective effects, highlighting the involvement of the gut-liver axis. CONCLUSION: These findings support the therapeutic potential of AMPs as a multifaceted agent for DILI, exerting protective effects through modulation of oxidative stress, inflammation, apoptosis, and intestinal dysbiosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。