Antibacterial Effects of Synthetic Plantaricins Against Staphylococcus aureus.

合成植物素对金黄色葡萄球菌的抗菌作用

阅读:5
作者:Oh Seung-Eun, Heo Sojeong, Lee Gawon, Kim Jina, Kwak Mi-Sun, Jeong Do-Won
Background/Objectives: Plantaricins without a signal sequence were synthesized based on bacteriocins, plantaricins A, E, F, J, and K, of Lactiplantibacillus plantarum KM2. The antibacterial activities of four combinations of synthetic plantaricins-spPlnA, E&F, E&J, and J&K-were identified against Staphylococcus aureus ATCC 12692. And in this experiment, we aimed to identify the antimicrobial mechanism of the synthesized plantaricin sample against S. aureus. Methods/Results: The minimal inhibitory concentrations for each combination were 1.4 μg/mL, 1.8 μg/mL, 1.6 μg/mL, and 1.6 μg/mL, respectively. Raman spectra changed after treating S. aureus ATCC 12692 with synthetic plantaricins. Furthermore, transmission electron microscopy results revealed that the four synthetic plantaricin combinations could induce the cell lysis of S. aureus ATCC 12692. Finally, the four synthetic plantaricin combinations maintained their antibacterial effect at temperatures below 40 °C, and at pH levels of pH = (4-7). Except for spPlnJ&K, they are stable against the action of α-amylase and lysozyme. Overall, these results indicate that, excepting spPlnJ&K, the three synthetic plantaricin combinations exhibit similar antibacterial activity. Conclusions: Through this study, we confirmed that synthetic plantaricin exhibited antimicrobial activity against S. aureus, demonstrating its potential as a direct antimicrobial agent. However, since the antimicrobial activity decreased due to protease, it was confirmed that its use is limited in environments where protease is present.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。