FOXO-mediated repression of Dicer1 regulates metabolism, stress resistance, and longevity in Drosophila.

FOXO介导的Dicer1抑制调节果蝇的新陈代谢、抗逆性和寿命

阅读:4
作者:Sánchez Juan A, Ingaramo María C, Gervé María P, Thomas Maria G, Boccaccio Graciela L, Dekanty Andrés
The adipose tissue plays a crucial role in metabolism and physiology, affecting animal lifespan and susceptibility to disease. In this study, we present evidence that adipose Dicer1 (Dcr-1), a conserved type III endoribonuclease involved in miRNA processing, plays a crucial role in the regulation of metabolism, stress resistance, and longevity. Our results indicate that the expression of Dcr-1 in murine 3T3L1 adipocytes is responsive to changes in nutrient levels and is subject to tight regulation in the Drosophila fat body, analogous to human adipose and hepatic tissues, under various stress and physiological conditions such as starvation, oxidative stress, and aging. The specific depletion of Dcr-1 in the Drosophila fat body leads to changes in lipid metabolism, enhanced resistance to oxidative and nutritional stress, and is associated with a significant increase in lifespan. Moreover, we provide mechanistic evidence showing that the JNK-activated transcription factor FOXO binds to conserved DNA-binding sites in the dcr-1 promoter, directly repressing its expression in response to nutrient deprivation. Our findings emphasize the importance of FOXO in controlling nutrient responses in the fat body by suppressing Dcr-1 expression. This mechanism coupling nutrient status with miRNA biogenesis represents a novel and previously unappreciated function of the JNK-FOXO axis in physiological responses at the organismal level.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。