The microbial loop has been suggested as an alternative route for better utilization of phytate, a poorly available P source to plants. We hypothesized that bacterial grazer activity might dramatically enhance bacterial migration and proliferation, increasing the probability of phytate hydrolysis by bacterial phytases and, thus, phytate mineralization and release of free phosphate. We tested this hypothesis in a two-compartment system with a solid medium containing phytate or free phosphate as the source of P. Two bacterial species, B. subtilis 168 or Bradyrhizobium sp., with or without bacterial grazing nematodes belonging to Acrobeloides sp. previously fed on each of the bacterial species, were inoculated at a single point in the medium. Whatever the P source, nematode migration within both zones allowed the proliferation of bacteria. However, B. subtilis 168 was more efficient in using phytate than Bradyrhizobium sp. since the highest bacterial cell density and free phosphate concentrations were reached by Acrobeloides sp. fed on B. subtilis 168. The grazer activity seemed to be crucial to enhance phytate mineralization, despite Acrobeloides sp. showing a higher preference to feed on Bradyrhizobium sp. This study provides new insights into the effects of bacterial grazer activity on phytate mineralization.
The grazing activity of Acrobeloides sp. drives phytate mineralisation within its trophic relationship with bacteria.
Acrobeloides sp. 的摄食活动在其与细菌的营养关系中驱动植酸盐矿化
阅读:4
作者:GarcÃa-Sánchez Mercedes, Souche Mathilde, Trives-Segura Carlos, Plassard Claude
| 期刊: | Journal of Nematology | 影响因子: | 1.300 |
| 时间: | 2021 | 起止号: | 2021 Feb 25; 53:e2021-21 |
| doi: | 10.21307/jofnem-2021-021 | 研究方向: | 微生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
