Phenotypes of myopathy-related actin mutants in differentiated C2C12 myotubes.

分化的 C2C12 肌管中肌病相关肌动蛋白突变体的表型

阅读:4
作者:Bathe Friederike S, Rommelaere Heidi, Machesky Laura M
BACKGROUND: About 20 % of nemaline myopathies are thus far related to skeletal muscle alpha-actin. Seven actin mutants located in different parts of the actin molecule and linked to different forms of the disease were selected and expressed as EGFP-tagged constructs in differentiated C2C12 mytoubes. Results were compared with phenotypes in patient skeletal muscle fibres and with previous expression studies in fibroblasts and C2C12 myoblasts/myotubes. RESULTS: Whereas EGFP wt-actin nicely incorporated into endogenous stress fibres and sarcomeric structures, the mutants showed a range of phenotypes, which generally changed upon differentiation. Many mutants appeared delocalized in myoblasts but integrated into endogenous actin structures after 4-6 days of differentiation, demonstrating a poor correlation between the appearance in myotubes and the severity of the disease. However, for some mutants, integration into stress fibres induced aberrant structures in differentiated cells, like thickening or fragmentation of stress fibres. Other mutants almost failed to integrate but formed huge aggregates in the cytoplasm of myotubes. Those did not co-stain with alpha-actinin, a main component of nemaline bodies found in patient muscle. Interestingly, nuclear aggregates as formed by two of the mutants in myoblasts were found less frequently or not at all in differentiated cells. CONCLUSION: Myotubes are a suitable system to study the capacity of a mutant to incorporate into actin structures or to form or induce pathological changes. Some of the phenotypes observed in undifferentiated myoblasts may only be in vitro effects. Other phenotypes, like aberrant stress fibres or rod formation may be more directly correlated with disease phenotypes. Some mutants did not induce any changes in the cellular actin system, indicating the importance of additional studies like functional assays to fully characterize the pathological impact of a mutant.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。