A high-performance extracellular field potential analyzer for iPSC-derived cardiomyocytes.

用于 iPSC 衍生心肌细胞的高性能细胞外场电位分析仪

阅读:4
作者:Patel Nidhi, Shen Alex, Wada Yuko, Blair Marcia, Mitchell Devyn, Vanags Loren, Woo Suah, Ku Matthew, Dauda Kundivy, Morris William, Yang Minjoo, Knollmann Björn C, Salem Joe-Elie, Glazer Andrew M, Kroncke Brett M
Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have emerged as a pivotal model for research. Specialized devices can generate Extracellular Field Potential (EFP) measurements from these cells, analogous to the ventricular complex of the electrocardiogram. However, electrophysiological analysis can be complex and requires specialized expertise, posing a barrier to broader adoption in non-specialized labs. We present the EFP-Analyzer (EFPA), a semi-automized analyzer for EFP traces, which identifies and averages beats, identifies landmarks, and calculates intervals. We demonstrate an analysis of 358 EFP traces from 22 patient-derived lines. We analyzed spontaneously beating iPSC-CMs and optically paced iPSC-CMs through channelrhodopsin. We developed stringent quality criteria and measured EFP intervals, including Field Potential Duration (FPD). We further analyzed the usability and data replicability of EFPA through an inter-intra observer analysis. Correlation coefficient for inter-reader tangent and threshold measurements for these FPD ranged between r: 0.93-1.00. Bland-Altman plots comparing inter observer results for spontaneously beating and paced iPSC-CMs showed 95% limits of agreement (- 13.6 to 19.4 ms and - 13.2 to 15.3 ms, respectively). EFPA could accurately detect FPD prolongation due to drug (moxifloxacin) or pathogenic loss of function mutations (CACNA1C N639T). This program and instructions are available for download at https://github.com/kroncke-lab/EFPA .

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。