Human iPSC-derived motor neuron innervation enhances the differentiation of muscle bundles engineered with benchtop fabrication techniques.

人类 iPSC 衍生的运动神经元支配增强了利用台式制造技术构建的肌肉束的分化

阅读:4
作者:Santoso Jeffrey W, Do Stephanie K, Verma Riya, Do Alexander V, Hendricks Eric, Ichida Justin K, McCain Megan L
Engineered skeletal muscle tissues are critical tools for disease modeling, drug screening, and regenerative medicine, but are limited by insufficient maturation. Because innervation is a critical regulator of skeletal muscle development and regeneration in vivo, motor neurons are hypothesized to improve the maturity of engineered skeletal muscle tissues. Although motor neurons have been added to pre-engineered muscle constructs, the impact of motor neurons added prior to the onset of muscle differentiation has not been evaluated. In this study, benchtop fabrication equipment was used to facilely fabricate chambers for engineering 3-dimensional (3-D) skeletal muscles bundles and measuring their contractile performance. Primary chick myoblasts were embedded in an extracellular matrix hydrogel solution and differentiated into engineered muscle bundles, with or without the addition of human induced pluripotent stem cell (hiPSC)-derived motor neurons. Muscle bundles differentiated with motor neurons had neurites distributed throughout their volume and a higher myogenic index compared to muscle bundles without motor neurons. Innervated muscle bundles also generated significantly higher twitch and tetanus forces in response to electrical field stimulation after one and two weeks of differentiation compared to non-innervated muscle bundles cultured with or without neurotrophic factors. Non-innervated muscle bundles also experienced a decline in rise and fall times as the culture progressed, whereas innervated muscle bundles and non-innervated muscle bundles with neurotrophic factors maintained more consistent rise and fall times. Innervated muscle bundles also expressed the highest levels of the genes for slow myosin light chain 3 (MYL3) and myoglobin (MB), which are associated with slow twitch fibers. These data suggest that motor neuron innervation enhances the structural and functional development of engineered skeletal muscle constructs and maintains them in a more oxidative phenotype.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。