Photoacoustic topography through an ergodic relay for functional imaging and biometric application in vivo

通过遍历中继的光声地形图进行体内功能成像和生物识别应用

阅读:9
作者:Yang Li, Lei Li, Liren Zhu, Junhui Shi, Konstantin Maslov, Lihong V Wang

Aim

To overcome these limitations, we developed photoacoustic topography through an ergodic relay (PATER), a novel high-speed imaging system with a single-element detector. Approach: PATER images widefield PA signals encoded by the acoustic ergodic relay with a single-laser shot.

Conclusions

PATER has achieved a high-speed temporal resolution over a large field of view. Our results suggest that PATER is a promising and economical alternative to PACT for fast imaging.

Results

We applied PATER in vivo to monitor changes in oxygen saturation in a mouse brain and also to demonstrate high-speed matching of vascular patterns for biometric authentication. Conclusions: PATER has achieved a high-speed temporal resolution over a large field of view. Our results suggest that PATER is a promising and economical alternative to PACT for fast imaging.

Significance

Photoacoustic (PA) tomography has demonstrated versatile biomedical applications. However, an array-based PA computed tomography (PACT) system is complex and expensive, whereas a single-element detector-based scanning PA system is too slow to detect some fast biological dynamics in vivo. New PA imaging methods are sought after. Aim: To overcome these limitations, we developed photoacoustic topography through an ergodic relay (PATER), a novel high-speed imaging system with a single-element detector. Approach: PATER images widefield PA signals encoded by the acoustic ergodic relay with a single-laser shot. Results: We applied PATER in vivo to monitor changes in oxygen saturation in a mouse brain and also to demonstrate high-speed matching of vascular patterns for biometric authentication. Conclusions: PATER has achieved a high-speed temporal resolution over a large field of view. Our results suggest that PATER is a promising and economical alternative to PACT for fast imaging.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。