Bioorthogonal Engineering of Cellular Microenvironments Using Isonitrile Ligations.

利用异腈连接进行细胞微环境的生物正交工程

阅读:8
作者:Zhou Ping, Brown Lauren, Madl Christopher M
Hydrogels are routinely used as scaffolds to mimic the extracellular matrix for tissue engineering. However, common strategies to covalently crosslink hydrogels employ reaction conditions with potential off-target biological reactivity. The limited number of suitable bioorthogonal chemistries for hydrogel crosslinking restricts how many material properties can be independently addressed to control cell fate. To expand the bioorthogonal toolkit available for hydrogel crosslinking, we identify isonitrile ligations as a promising class of reactions. Isonitriles are compact, stable, selective, and biocompatible moieties that react with chlorooxime (ChO), tetrazine (Tz), and azomethine imine (AMI) functional groups under physiological conditions. We demonstrate that all three ligation reactions can form hydrogels, with isonitrile-ChO ligation exhibiting optimal gelation properties. Synthetic poly(ethylene glycol) (PEG) hydrogels crosslinked by isonitrile-ChO ligation exhibit rapid gelation kinetics, elastic mechanical properties, stability under physiological conditions, and high biocompatibility. By combining ChO-functionalized multi-arm PEGs with isonitrile-functionalized engineered elastin-like proteins (ELPs), we demonstrate simultaneous control over network connectivity and adhesive ligand presentation, which in turn regulate cell spreading. These hydrogels enable the long-term culture of numerous human cell types relevant to regenerative medicine. Furthermore, we demonstrate that isonitrile-ChO ligation is orthogonal to common azide-alkyne cycloaddition, enabling independent, bioorthogonal functionalization of hydrogels containing live cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。