The development of diabetes in E2f1/E2f2 mutant mice reveals important roles for bone marrow-derived cells in preventing islet cell loss.

E2f1/E2f2 突变小鼠糖尿病的发展揭示了骨髓来源细胞在防止胰岛细胞丢失方面的重要作用

阅读:3
作者:Li Feng X, Zhu Jing W, Tessem Jeffery S, Beilke Joshua, Varella-Garcia Marileila, Jensen Jan, Hogan Christopher J, DeGregori James
Our studies of mice deficient for the E2F1 and E2F2 transcription factors have revealed essential roles for these proteins in the cell cycle control of pancreatic exocrine cells and the regulation of pancreatic beta cell maintenance. Pancreatic exocrine cells in E2f1-/-E2f2 mutant mice become increasingly polyploid with age, coinciding with severe exocrine atrophy. Furthermore, mice deficient for both E2F1 and E2F2 develop nonautoimmune, insulin-dependent diabetes with high penetrance. Surprisingly, transplantation of wild-type bone marrow can prevent or rescue diabetes in E2f1-/-E2f2-/-mice. We hypothesize that exocrine degeneration results in a destructive environment for beta cells, which can be alleviated by restoration of the hematopoietic system that is also defective in E2f1-/-E2f2-/-mice The demonstration that beta cell maintenance under conditions of stress is influenced by bone marrow-derived cells may provide important insight into the design of therapies to boost islet mass and function in diabetic patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。