The European and Japanese eel NaCl cotransporters β exhibit chloride currents and are resistant to thiazide type diuretics.

欧洲鳗和日本鳗的 NaCl 共转运蛋白 β 表现出氯离子电流,并且对噻嗪类利尿剂有抵抗力

阅读:7
作者:Moreno Erika, Plata Consuelo, Vázquez Norma, Oropeza-Viveros Dulce María, Pacheco-Alvarez Diana, Rojas-Vega Lorena, Olin-Sandoval Viridiana, Gamba Gerardo
The thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian distal convoluted tubule, and the inhibition of its function with thiazides is widely used for the treatment of arterial hypertension. In mammals and teleosts, NCC is present as one ortholog that is mainly expressed in the kidney. One exception, however, is the eel, which has two genes encoding NCC. The eNCCα is located in the kidney and eNCCβ, which is present in the apical membrane of the rectum. Interestingly, the European eNCCβ functions as a Na(+)-Cl(-) cotransporter that is nevertheless resistant to thiazides and is not activated by low-chloride hypotonic stress. However, in the Japanese eel rectal sac, a thiazide-sensitive NaCl transport mechanism has been described. The protein sequences between eNCCβ and jNCCβ are 98% identical. Here, by site-directed mutagenesis, we transformed eNCCβ into jNCCβ. Our data showed that jNCCβ, similar to eNCCβ, is resistant to thiazides. In addition, both NCCβ proteins have high transport capacity with respect to their renal NCC orthologs and, in contrast to known NCCs, exhibit electrogenic properties that are reduced when residue I172 is substituted by A, G, or M. This is considered a key residue for the chloride ion-binding sites of NKCC and KCC. We conclude that NCCβ proteins are not sensitive to thiazides and have electrogenic properties dependent on Cl(-), and site I172 is important for the function of NCCβ.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。