Some silencing small (s)RNAs, comprising micro (mi)RNAs and small-interfering (si)RNAs, move between plant cells to orchestrate gene expression and defense. Besides possible redundancy or embryo lethality, a prevalent challenge in genetic studies of mobile silencing is to discriminate bona fide alterations to sRNA movement from impaired cell-autonomous sRNA activity within silencing-recipient cells. Without such clarifications, cell-to-cell mobility factors are yet to be unequivocally identified. Consequently, known properties of sRNA movement, including contextuality and directionality, remain poorly explained. Circumstantial evidence and synthetic biology pinpoint plasmodesmata (PDs) - the pores traversing plant cell walls (CWs) - as the likely channels involved. Yet, how plants control the number of primary and secondary PDs developing respectively before and after CW formation remains largely unknown. Here, we address these intertwined issues in Arabidopsis using a forward screen for compromised epidermis-to-mesophyll movement of an artificial (a)miRNA. We identify a pectin acetyl-transferase mutation that, we demonstrate, reduces amiRNA physical trafficking but also impedes siRNA, GFP, and viral movement by decreasing the frequency of leaf secondary PDs. sRNA movement at leaf interfaces involving primary PDs remains unaffected, however, as does miRNA and GFP cell-to-cell mobility in roots, hinting at how movement's contextuality and directionality might be achieved. We also show that reducing de-esterified pectin depolymerization decreases leaves' symplasmic connectivity, whereas defective pectin biogenesis increases PD number. Combining genetics with antibody-based pectin probing and atomic force microscopy helps delineate a mechanistically coherent framework whereby pectin esterification and/or abundance impact CW loosening, a process required for CW extension during which secondary PDs form to enable macromolecular trafficking.
A pectin acetyl-transferase facilitates secondary plasmodesmata formation and RNA silencing movement between plant cells.
果胶乙酰转移酶促进次生胞间连丝的形成和 RNA 沉默在植物细胞间的移动
阅读:2
作者:Jay Florence, Brioudes Florian, NovakoviÄ Lazar, Imboden André, Benitez-Alfonso Yoselin, Voinnet Olivier
| 期刊: | Plant Journal | 影响因子: | 5.700 |
| 时间: | 2025 | 起止号: | 2025 May;122(3):e70194 |
| doi: | 10.1111/tpj.70194 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
