Structural Bases of Dihydroxy Acid Dehydratase Inhibition and Biodesign for Self-Resistance.

二羟基酸脱水酶抑制的结构基础及自身抗性的生物设计

阅读:5
作者:Zang Xin, Bat-Erdene Undramaa, Huang Weixue, Wu Zhongshou, Jacobsen Steve E, Tang Yi, Zhou Jiahai
Dihydroxy acid dehydratase (DHAD) is the third enzyme in the plant branched-chain amino acid biosynthetic pathway and the target for commercial herbicide development. We have previously reported the discovery of fungal natural product aspterric acid (AA) as a submicromolar inhibitor of DHAD through self-resistance gene directed genome mining. Here, we reveal the mechanism of AA inhibition on DHAD and the self-resistance mechanism of AstD, which is encoded by the self-resistance gene astD. As a competitive inhibitor, the hydroxycarboxylic acid group of AA mimics the binding of the natural substrate of DHAD, while the hydrophobic moiety of AA occupies the substrate entrance cavity. Compared to DHAD, AstD has a relatively narrow substrate channel to prevent AA from binding. Several mutants of DHAD were generated and assayed to validate the self-resistance mechanism and to confer Arabidopsis thaliana DHAD with AA resistance. These results will lead to the engineering of new type of herbicides targeting DHAD and provide direction for the ecological construction of herbicide-resistant crops.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。