RNA interference-mediated silencing of BACE and APP attenuates the isoflurane-induced caspase activation.

RNA干扰介导的BACE和APP沉默可减弱异氟烷诱导的caspase活化

阅读:7
作者:Dong Yuanlin, Xu Zhipeng, Zhang Yiying, McAuliffe Sayre, Wang Hui, Shen Xia, Yue Yun, Xie Zhongcong
BACKGROUND: β-Amyloid protein (Aβ) has been shown to potentiate the caspase-3 activation induced by the commonly used inhalation anesthetic isoflurane. However, it is unknown whether reduction in Aβ levels can attenuate the isoflurane-induced caspase-3 activation. We therefore set out to determine the effects of RNA interference-mediated silencing of amyloid precursor protein (APP) and β-site APP-cleaving enzyme (BACE) on the levels of Aβ and the isoflurane-induced caspase-3 activation. METHODS: H4 human neuroglioma cells stably transfected to express full-length human APP (H4-APP cells) were treated with small interference RNAs (siRNAs) targeted at silencing BACE and APP for 48 hours. The cells were then treated with 2% isoflurane for six hours. The levels of BACE, APP, and caspase-3 were determined using Western blot analysis. Sandwich Enzyme-linked immunosorbent assay (ELISA) was used to determine the extracellular Aβ levels in the conditioned cell culture media. RESULTS: Here we show for the first time that treatment with BACE and APP siRNAs can decrease levels of BACE, full-length APP, and APP c-terminal fragments. Moreover, the treatment attenuates the Aβ levels and the isoflurane-induced caspase-3 activation. These results further suggest a potential role of Aβ in the isoflurane-induced caspase-3 activation such that the reduction in Aβ levels attenuates the isoflurane-induced caspase-3 activation. CONCLUSION: These findings will lead to more studies which aim at illustrating the underlying mechanism by which isoflurane and other anesthetics may affect Alzheimer's disease neuropathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。