Hydrophilic loop 1 of Presenilin-1 and the APP GxxxG transmembrane motif regulate γ-secretase function in generating Alzheimer-causing Aβ peptides.

早老素-1 的亲水环 1 和 APP GxxxG 跨膜基序调节 α³-分泌酶功能,从而生成导致阿尔茨海默病的 Aβ 肽

阅读:5
作者:Liu Lei, Lauro Bianca M, Wolfe Michael S, Selkoe Dennis J
γ-Secretase is responsible for the proteolysis of amyloid precursor protein (APP) into amyloid-beta (Aβ) peptides, which are centrally implicated in the pathogenesis of Alzheimer's disease (AD). The biochemical mechanism of how processing by γ-secretase is regulated, especially as regards the interaction between enzyme and substrate, remains largely unknown. Here, mutagenesis reveals that the hydrophilic loop-1 (HL-1) of presenilin-1 (PS1) is critical for both γ-secretase step-wise cleavages (processivity) and its allosteric modulation by heterocyclic γ-modulatory compounds. Systematic mutagenesis of HL-1, including all of its familial AD mutations and additional engineered variants, and quantification of the resultant Aβ products show that HL-1 is necessary for proper sequential γ-secretase processivity. We identify Y106, L113, and Y115 in HL-1 as key targets for heterocyclic γ-secretase modulators (GSMs) to stimulate processing of pathogenic Aβ peptides. Further, we confirm that the GxxxG domain in the APP transmembrane region functions as a critical substrate motif for γ-secretase processivity: a G29A substitution in APP-C99 mimics the beneficial effects of GSMs. Together, these findings provide a molecular basis for the structural regulation of γ-processivity by enzyme and substrate, facilitating the rational design of new GSMs that lower AD-initiating amyloidogenic Aβ peptides.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。