Cardiovascular responses to exercise are exaggerated in patients with chronic kidney disease (CKD). Enhanced sympathetic activation is thought to play a role with the exercise pressor reflex (EPR), a reflex originating in contracting muscle, modulating this response. Previous studies suggest an overactive EPR in patients with CKD as indicated by muscle sympathetic overactivation during static handgrip exercise. However, the role of the EPR could not be fully elucidated due to experimental constraints inherent to humans. The purpose of this study was to specifically test EPR function in a CKD animal model. Male Sprague-Dawley rats were assigned to a diet containing 0.25% adenine to induce CKD or a control diet. Mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) responses to activation of the EPR, including its functional components, the mechanoreflex and metaboreflex, were assessed in decerebrate, unanesthetized animals after feeding 10-14 wk. Plasma creatinine was significantly higher in CKD rats compared with controls (1.80â±â0.78 vs. 0.34â±â0.02 mg·dL(-1), P = 0.017). MAP and RSNA responses to muscle contraction (i.e., EPR activation) were potentiated in CKD rats compared with controls (Î = 36â±â19 vs. 17â±â8 mmHg, P = 0.014 and Î = 159â±â62 vs. 64â±â54%, P = 0.004, respectively). Similarly, the pressor and sympathetic responses to passive muscle stretch (i.e., mechanoreflex stimulation) were significantly higher in CKD than in control animals. Intra-arterial capsaicin administration (i.e., metaboreflex activation) induced an augmented pressor response in CKD rats, compared with controls. Our findings suggest that the EPR, stimulated by the mechanoreflex and metaboreflex, is exaggerated in CKD.NEW & NOTEWORTHY The current investigation identifies that activation of the exercise pressor reflex (EPR) by hindlimb muscle contraction generates exaggerated pressor responses in a chronic kidney disease (CKD) animal model. This hypertensive response is accompanied by sympathetic overactivation during EPR stimulation, with both the muscle mechanoreflex activated by passive muscle stretch and the muscle metaboreflex stimulated by intra-arterial capsaicin administration, contributing to the heightened pressor effect. These findings suggest augmented EPR, mechanoreflex, and metaboreflex function in CKD.
Exercise pressor reflex function is augmented in rats with chronic kidney disease.
患有慢性肾病的鼠的运动升压反射功能增强
阅读:7
作者:Kim Han-Kyul, Estrada Juan A, Fukazawa Ayumi, Hori Amane, Iwamoto Gary A, Smith Scott A, Mizuno Masaki, Vongpatanasin Wanpen
| 期刊: | American Journal of Physiology-Regulatory Integrative and Comparative Physiology | 影响因子: | 2.300 |
| 时间: | 2025 | 起止号: | 2025 Apr 1; 328(4):R460-R469 |
| doi: | 10.1152/ajpregu.00234.2024 | 研究方向: | 其它 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
