Retinoid-regulated FGF8f secretion by osteoblasts bypasses retinoid stimuli to mediate granulocytic differentiation of myeloid leukemia cells.

成骨细胞分泌视黄酸调节的 FGF8f 可绕过视黄酸刺激,介导髓系白血病细胞的粒细胞分化

阅读:4
作者:Chaudhry Parvesh, Yang Xiaochun, Wagner Michael, Jong Ambrose, Wu Lingtao
Signaling from the human hematopoietic stem cell (HSC) niche formed by osteoblastic cells regulates hematopoiesis. We previously found that retinoic acid receptor alpha (RARα), a transcription factor activated by retinoic acid (RA), mediates both granulocytic and osteoblastic differentiation. This effect depends on decreased phosphorylation of serine 77 of RARα (RARαS77) by the cyclin-dependent kinase-activating kinase (CAK) complex, a key cell-cycle regulator. In this article, we report that, by suppressing CAK phosphorylation of RARα, RA induces FGF8f to mediate osteosarcoma U2OS cell differentiation in an autocrine manner. By contrast, paracrine FGF8f secreted into osteoblast-conditioned medium by U2OS cells transduced with FGF8f or a phosphorylation-defective RARαS77 mutant, RARαS77A, bypasses RA stimuli to cross-mediate granulocytic differentiation of different types of human leukemic myeloblasts and normal primitive hematopoietic CD34(+) cells, possibly through modulating mitogen-activated protein kinase (MAPK) pathways. Further experiments using recombinant human FGF8f (rFGF8f) stimuli, antibody neutralization, and peptide blocking showed that paracrine FGF8f is required for mediating terminal leukemic myeloblast differentiation. These studies indicate a novel regulatory mechanism of granulocytic differentiation instigated by RA from the HSC niche, which links loss of CAK phosphorylation of RARα with paracrine FGF8f-mediated MAPK signaling to mediate leukemic myeloblast differentiation in the absence of RA. Therefore, these findings provide a compelling molecular rationale for further investigation of paracrine FGF8f regulation, with the intent of devising HSC niche-based FGF8f therapeutics for myeloid leukemia, with or without RA-resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。