Effects of Complex I Inhibition on the Architecture of Neural Rosettes Differentiated from Human-Induced Pluripotent Stem Cells

复合物I抑制对人诱导多能干细胞分化而来的神经玫瑰花结结构的影响

阅读:3
作者:Stephanie Santarriaga ,Magdalena Vater ,Petra Dujmic ,Kaia Gerlovin ,Chun Wing Lee ,Rakesh Karmacharya
Orchestrated changes in cell arrangements and cell-to-cell contacts are susceptible to cellular stressors during central nervous system development. Effects of mitochondrial complex I inhibition on cell-to-cell contacts have been studied in vascular and intestinal structures; however, its effects on developing neuronal cells are largely unknown. We investigated the effects of the classical mitochondrial stressor and complex I inhibitor, rotenone, on the architecture of neural rosettes-radially organized neuronal progenitor cells (NPCs)-differentiated from human-induced pluripotent stem cells. We then analyzed the effects of rotenone on the distribution of cell-contact proteins within neural rosettes. Exposure to rotenone for 24 hours led to a dose-dependent irreversible disruption of the neural rosette architecture and relocalization of the cell-contact proteins ZO-1, β-catenin, and N-cadherin from the rosette center to the pericellular region. Though the levels of nestin and SOX2 remained unchanged, NPCs showed decreased levels of the NPC marker PAX6 and exhibited impaired neurogenesis following rotenone exposure. Our study suggests that complex I inhibition leads to a rearrangement of intercellular contacts with disruptive effects on neuronal development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。