Optimizing standardized lab-grown skin substitutes evidences a proliferation-differentiation switch based on ascorbic acid.

优化标准化实验室培育的皮肤替代品证明了基于抗坏血酸的增殖-分化转换

阅读:8
作者:Molina-Oviedo Angie Katherine, Sorrentino Ilaria, Clares-Pedrero Irene, Salamanca-Gonzalez Celina, Arevalo-Nuñez de Arenas Eduardo, Mazariegos Marina S, Cabañas Carlos, Medraño-Fernandez Iria
Developing standardized bioengineered constructs that accurately replicate human skin is a largely sought-after goal. Pathways initiated at the nurturing interface with the dermal compartment have the potential to modulate the developing epidermal architecture. Here, we identified ascorbic acid, a dermis-donated metabolite, as key in modulating the phenotypical identity of immortalized keratinocytes. Priming monolayers with 2 μg/mL of the culture-stable derivative L-ascorbic acid 2-phosphate (A2P) led to the emergence of a basal-like phenotype within the cells, which showed increased clonogenicity, nuclear/cytoplasmic ratio, and upregulation of progenitor markers. Instead, surpassing this dose induced intracellular ascorbic acid accumulation and promoted a motile status. In organotypic cultures, pre-incubation of founding keratinocytes with 2 μg/mL of A2P improved epithelial layering, whereas higher pretreatments resulted in poor stratification. These findings suggest that ascorbic acid levels in the self-renewing epithelium have a fundamental role in determining whether cells initially commit to differentiation, ultimately influencing regenerative outcomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。