The pericellular matrix (PCM) is the immediate microniche surrounding cells in various tissues, regulating matrix turnover, cell-matrix interactions, and disease. This study elucidates the structure-mechanical properties and mechanobiology of the PCM in fibrocartilage, using the murine meniscus as the model. The fibrocartilage PCM is comprised of thin, randomly oriented collagen fibrils that entrap proteoglycans, contrasting with the densely packed, highly aligned collagen fibers in the bulk extracellular matrix (ECM). Compared to the ECM, the PCM exhibits lower modulus and greater isotropy, but has similar relative viscoelastic properties. In Col5a1(+/-) menisci, the reduction of collagen V results in thicker, more heterogeneous collagen fibrils, reduced modulus, loss of isotropy and faster viscoelastic relaxation in the PCM. Such altered PCM leads to impaired matrix-to-cell strain transmission, and in turn, disrupts mechanotransduction of meniscal cells, as illustrated by reduced calcium signaling activities and alters expression of matrix genes. In vitro, Col5a1(+/-) cells produce a weakened PCM with inferior properties and reduced protection of cells against tensile stretch. These findings highlight the PCM as a distinctive microstructure in fibrocartilage mechanobiology, underscoring a pivotal role of collagen V in PCM function. Targeting the PCM or its constituents offers potential for improving meniscus regeneration, osteoarthritis intervention and broader fibrocartilage-related therapies.
Structure, Mechanics, and Mechanobiology of Fibrocartilage Pericellular Matrix Mediated by Type V Collagen.
V型胶原介导的纤维软骨细胞周围基质的结构、力学和力学生物学
阅读:5
作者:Wang Chao, Fan Mingyue, Heo Su Chin, Adams Sheila M, Li Thomas, Liu Yuchen, Li Qing, Loebel Claudia, Burdick Jason A, Lu X Lucas, Birk David E, Alisafaei Farid, Mauck Robert L, Han Lin
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2025 | 起止号: | 2025 Aug;12(32):e14750 |
| doi: | 10.1002/advs.202414750 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
