Statistical speech reconstruction for larynx-related dysphonia has achieved good performance using Gaussian mixture models and, more recently, restricted Boltzmann machine arrays; however, deep neural network (DNN)-based systems have been hampered by the limited amount of training data available from individual voice-loss patients. The authors propose a novel DNN structure that allows a partially supervised training approach on spectral features from smaller data sets, yielding very good results compared with the current state-of-the-art.
Speech reconstruction using a deep partially supervised neural network.
基于深度部分监督神经网络的语音重建
阅读:5
作者:McLoughlin Ian, Li Jingjie, Song Yan, Sharifzadeh Hamid R
| 期刊: | Healthcare Technology Letters | 影响因子: | 3.300 |
| 时间: | 2017 | 起止号: | 2017 Jun 9; 4(4):129-133 |
| doi: | 10.1049/htl.2016.0103 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
