Parkinson's disease (PD) is a progressive neurodegenerative disorder marked by the degeneration of dopaminergic neurons in the substantia nigra, leading to decreased dopamine levels in the striatum and causing a range of motor and non-motor impairments. Although the molecular mechanisms driving PD progression remain incompletely understood, emerging evidence suggests that the buildup of nuclear DNA damage, especially DNA double-strand breaks (DDSBs), plays a key role in contributing neurodegeneration, promoting senescence and neuroinflammation. Despite the pathogenic role for DDSB in neurodegenerative disease, targeting DNA repair mechanisms in PD is largely unexplored as a therapeutic approach. Ataxia telangiectasia mutated (ATM), a key kinase in the DNA damage response (DDR), plays a crucial role in neurodegeneration. In this study, we evaluated the therapeutic potential of AZD1390, a highly selective and brain-penetrant ATM inhibitor, in reducing neuroinflammation and improving behavioral outcomes in a mouse model of α-synucleinopathy. Four-month-old C57BL/6J mice were unilaterally injected with either an empty AAV1/2 vector (control) or AAV1/2 expressing human A53T α-synuclein to the substantia nigra, followed by daily AZD1390 treatment for six weeks. In AZD1390-treated α-synuclein mice, we observed a significant reduction in the protein level of γ-H2AX, a DDSB marker, along with downregulation of senescence-associated markers, such as p53, Cdkn1a, and NF-κB, suggesting improved genomic integrity and attenuation of cellular senescence, indicating enhanced genomic stability and reduced cellular aging. AZD1390 also significantly dampened neuroinflammatory responses, evidenced by decreased expression of key pro-inflammatory cytokines and chemokines. Interestingly, mice treated with AZD1390 showed significant improvements in behavioral asymmetry and motor deficits, indicating functional recovery. Overall, these results suggest that targeting the DDR via ATM inhibition reduces genotoxic stress, suppresses neuroinflammation, and improves behavioral outcomes in a mouse model of α-synucleinopathy. These findings underscore the therapeutic potential of DDR modulation in PD and related synucleinopathy.
DNA Damage Response Regulation Alleviates Neuroinflammation in a Mouse Model of α-Synucleinopathy.
DNA损伤反应调节可减轻α-突触核蛋白病小鼠模型中的神经炎症
阅读:4
作者:Khan Sazzad, Singh Himanshi, Xiao Jianfeng, Khan Mohammad Moshahid
| 期刊: | Biomolecules | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Jun 20; 15(7):907 |
| doi: | 10.3390/biom15070907 | 种属: | Mouse |
| 研究方向: | 神经科学 | 疾病类型: | 神经炎症 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
