Macrophages migrate persistently and directionally upon entering 2D confinement in the presence of extracellular matrix.

巨噬细胞在细胞外基质存在的情况下进入二维受限空间后,会持续且有方向地迁移

阅读:3
作者:Stinson Matthew W, Paulson Summer G, Carlile Ethan M, Rotty Jeremy D
Cells sense and respond to their environment in a myriad of ways. In many instances, they must integrate simultaneous cues ranging from the physical properties and composition of the extracellular matrix to guidance cues that stimulate chemotaxis or haptotaxis. How cells make sense of multiple simultaneous cues is an ongoing physiologically relevant area of research. The present study seeks to contribute to the understanding of multi-cue sensing by understanding how the transition to a confined setting with or without an added haptotactic gradient alters macrophage migration. We found that the transition to confinement is itself a directional cue capable of driving persistent migration hours after macrophages enter the confined environment. Next, we found that a haptotactic fibronectin gradient made cells even more directionally persistent under confinement. Finally, Arp2/3 complex deletion rendered macrophages unresponsive to the haptotactic gradient, but they retained directionally persistent migration due to their transition to confinement. These findings may be particularly relevant for cells that move from an adherent 2D environment into a confining 3D environment, like leukocytes and circulating tumor cells that extravasate into peripheral tissue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。