Membrane contact sites (MCSs) are areas of close proximity between organelles that allow the exchange of material, among other roles. The endoplasmic reticulum (ER) has MCSs with a variety of organelles in the cell. MCSs are dynamic, responding to changes in cell state, and are, therefore, best visualized through inducible labeling methods. However, existing methods typically distort ER-MCSs, by expanding contacts or creating artificial ones. Here, we describe a new method for inducible labeling of ER-MCSs using the Lamin B receptor (LBR) and a generic anchor protein on the partner organelle. Termed LaBeRling, this versatile, one-to-many approach allows labeling of different types of ER-MCSs (mitochondria, plasma membrane, lysosomes, early endosomes, lipid droplets, and Golgi), on-demand, in interphase or mitotic human cells. LaBeRling is nondisruptive and does not change ER-MCSs in terms of the contact number, extent or distance measured; as determined by light microscopy or a deep-learning volume electron microscopy approach. We applied this method to study the changes in ER-MCSs during mitosis and to label novel ER-Golgi contact sites at different mitotic stages in live cells.
Nondisruptive inducible labeling of ER-membrane contact sites using the Lamin B receptor.
利用层粘蛋白B受体对内质网膜接触位点进行非破坏性诱导标记
阅读:8
作者:Downie Laura, Ferrandiz Nuria, Courthold Elizabeth, Jones Megan, Royle Stephen J
| 期刊: | PLoS Biology | 影响因子: | 7.200 |
| 时间: | 2025 | 起止号: | 2025 Jul 10; 23(7):e3003249 |
| doi: | 10.1371/journal.pbio.3003249 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
