Three-dimensional cellularization in chytrid fungi uses distinct mechanisms from those driving one- and two-dimensional cytokinesis in animals and yeast.

壶菌的三维细胞化机制与动物和酵母的一维和二维细胞分裂机制截然不同

阅读:6
作者:Medina Edgar M, Elting Mary W, Fritz-Laylin Lillian
Chytrid fungi provide a model for studying three-dimensional cellularization, where nuclei that are dispersed throughout the cytoplasm are synchronously compartmentalized into daughter cells. This organization poses geometric challenges not faced by cells undergoing conventional cytokinesis or Drosophila cellularization, where nuclei are organized in one- or two-dimensional arrangements. We use the chytrid Spizellomyces punctatus to show that chytrid cellularization begins with nuclei and centrosomes migrating to the plasma membrane, where centrosome-associated vesicles define sites of membrane invagination. The resulting tubular furrows extend, creating a foam-like tessellation of polyhedral compartments, each with a nucleus and cilium. Using inhibitors and laser ablation, we show that actomyosin networks drive cellularization, while microtubules pattern but are not essential for cellularization. Finally, we suggest that chytrids may have incorporated mechanisms associated with ciliogenesis in animals to coordinate the association of internal nuclei with actomyosin networks and membranes to solve the unique challenges associated with three-dimensional cellularization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。