Dimethyl-2-oxoglutarate but not antioxidants prevents glucose hypometabolism induced neural cell death: implications in the pathogenesis and therapy of Alzheimer's disease.

二甲基-2-氧代戊二酸(而非抗氧化剂)可预防葡萄糖代谢不足引起的神经细胞死亡:对阿尔茨海默病的发病机制和治疗具有重要意义

阅读:5
作者:Chauhan Aman, Bhutani Karanpreet, Bir Aritri, Singh Ajay, Chakrabarti Sankha Shubhra, Saini Adesh K, Chakrabarti Sasanka, Ghosh Arindam
Cerebral glucose hypometabolism is a cardinal molecular signature of Alzheimer's disease, and its role in the pathogenesis of this disorder is under intensive study in both animal and cell-based models. In the current study, we exposed SH-SY5Y cells (human neuroblastoma cell line) over a period of 48 h to DRB18, an inhibitor of multiple glucose transporters, in different concentrations to develop a state of glucose hypometabolism. Under this metabolic insult, in SH-SY5Y cells a profound dose-dependent neural cell death, an increased production of reactive oxygen radicals, mitochondrial membrane depolarization and a depletion of cellular ATP content were noted; these effects were not prevented by lipid-soluble novel antioxidants such as ferrostatin-1 and liproxstatin-1 or by a general water-soluble antioxidant like N-acetylcysteine. However, dimethyl-2-oxoglutarate, the cell-permeable analogue of 2-oxoglutarate (α-ketoglutarate) which can serve as an alternative fuel during glucose hypometabolism partially prevented both mitochondrial impairments and neural cell death. Thus, dimethyl-2-oxoglutarate may be explored further as a potential neuroprotective compound for Alzheimer's disease, and its effect on amyloid beta metabolism and homeostasis should be examined under glucose hypometabolic stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。