Multilayered Freestanding Porous Polycarbonate Nanosheets with Directed Protein Permeability for Cell-Encapsulated Devices.

用于细胞封装装置的具有定向蛋白质渗透性的多层自支撑多孔聚碳酸酯纳米片

阅读:14
作者:Zushi Nanami, Takuma Megumi, Endo Atena, Suzuki Mahiro, Wu Yumeng, Shiraki Nobuaki, Kume Shoen, Fujie Toshinori
Implantable pancreatic β cell-encapsulated devices are required for the treatment of type 1 diabetes. Such devices should enable a semipermeable membrane to release insulin in response to glucose levels while avoiding immune reactions. Micrometer-thick track-etched porous polycarbonate (PC) membranes have been used for this purpose. However, the immediate release of insulin remains a challenge in the development of such semipermeable membranes. Herein, we attempted to develop a freestanding polymeric ultrathin film (nanosheet) with a porous structure that can be used in a cell-encapsulated device. Specifically, we fabricated a nonbiodegradable, porous PC nanosheet to enhance molecular permeability. The nanosheet was multistacked to ensure the controlled permeability of proteins of various molecular weights, such as insulin and IgG. The porous PC nanosheet was prepared by gravure coating using a blend solution comprising PC and polystyrene (PS) to induce macro-phase separation of the PC and PS. When the PC:PS weight ratio of the mixture was reduced to 3:1, we succeeded in fabricating a porous PC nanosheet (thickness: 100 nm, diameter: < 2.5 μm). A triple layer of such porous nanosheets with various pore sizes demonstrated 10 times less protein clogging, 10 times higher insulin permeability, and comparable IgG-blocking capability compared with commercially available porous PC membranes (thickness: 10 μm). Finally, we demonstrated that a cell-encapsulated device equipped with the multilayered porous PC nanosheet as a permeable membrane preserved the glucose response level of insulin-producing cells before, during, and after the cell-encapsulation process. We believe that cell-encapsulated devices equipped with such porous PC nanosheets will enable immediate insulin release in response to changes in glucose levels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。