ESC models of autism with copy-number variations reveal cell-type-specific translational vulnerability.

具有拷贝数变异的自闭症 ESC 模型揭示了细胞类型特异性的翻译脆弱性

阅读:4
作者:Nomura Jun, Zuko Amila, Kishimoto Keiko, Mutsumine Hiroaki, Maegawa Hiroko, Fukatsu Kazumi, Nomura Yoshiko, Liu Xiaoxi, Nakai Nobuhiro, Takahashi Eiki, Kouno Tsukasa, Shin Jay W, Takumi Toru
Human genetics has identified numerous copy-number variations (CNVs) associated with autism spectrum disorders (ASDs). However, the lack of standardized biological resources impedes understanding of the cell-type-specific common features of ASD. Here, we establish a biological resource including 63 genetically modified mouse embryonic stem cell (ESC) lines as genetic models of ASD. We perform neural differentiation using 12 representative cell lines, and their comprehensive analyses, including single-cell RNA sequencing, uncover cell-type-specific susceptible pathways. Moreover, we find that a common phenotype in glutamatergic and GABAergic neurons is reduced expression of Upf3b, a core member of the translational termination and nonsense-mediated decay (NMD). This finding emphasizes that the dysfunction of translational machinery in the developing neurons can be a possible target of early intervention for ASD. This ESC model bank becomes an invaluable resource for studies in vitro and in vivo of ASD or other neuropsychiatric disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。