Defining cellular diversity at the swine maternal-fetal interface using spatial transcriptomics and organoids

利用空间转录组学和类器官定义猪母胎界面细胞多样性

阅读:2
作者:Cole R McCutcheon ,Allyson Caldwell ,Liheng Yang ,Elisa Crisci ,Jonathan Alex Pasternak ,Carolyn B Coyne
The placenta is a dynamic, embryo-derived organ essential for fetal growth and development. While all eutherian mammals have placentas composed of fetal-derived trophoblasts that mediate maternal-fetal exchange, their anatomical and histological structures vary across species due to evolutionary divergence. Despite the cellular heterogeneity of porcine trophoblasts in vivo, understanding the mechanisms driving porcine placental development has been limited by the lack of in vitro models replicating this heterogeneity. In this study, we derived swine trophoblast organoids (sTOs) from full-term porcine placentas, retaining key transcriptional signatures of in vivo trophoblasts. To identify conserved cell populations, we integrated Visium spatial transcriptomics from mid-gestation porcine placentas with single-cell transcriptomics from sTOs. Spatial transcriptomics revealed novel markers of the porcine uterus and placenta, enabling precise separation of histological structures at the maternal-fetal interface. The integration of tissue and sTO transcriptomics showed that sTOs spontaneously differentiate into distinct trophoblast populations, with conserved gene expression and cell communication programs. These findings demonstrate that sTOs recapitulate porcine placental trophoblast populations, offering a powerful model for advancing placentation research. Our work also provides a spatially resolved whole-transcriptome dataset of the porcine maternal-fetal interface, opening new avenues for discoveries in placental development, evolution, and health across mammals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。