Adaptive modulation of physiological traits in response to environmental variability, particularly dietary fluctuations, is essential for organismal fitness. Such adaptability is governed by complex gene-diet interactions, yet the molecular circuits integrating microbe-derived metabolites with host metabolic and stress response pathways remain less explored. Here, we identify the conserved mechanistic target of rapamycin complex 2 (mTORC2) component, RICTOR, as a critical regulator of dietary plasticity in Caenorhabditis elegans, specifically in response to bacterially derived vitamin B12 (B12). Loss of rict-1, the C. elegans ortholog of RICTOR, confers enhanced osmotic stress tolerance and longevity on B12-rich bacterial diets. These phenotypic adaptations require two B12-dependent enzymes: methionine synthase (METR-1), functioning in the folate-methionine cycle (Met-C), and methylmalonyl-CoA mutase (MMCM-1), a mitochondrial enzyme essential for propionate catabolism. The latter catalyzes the formation of succinyl-CoA, subsequently converted to succinate via the tricarboxylic acid (TCA) cycle. Elevated succinate levels were found to induce mitochondrial fragmentation, thereby activating mitophagy, an autophagic process indispensable for the increased stress resilience and longevity observed in the rict-1 mutants. Crucially, this Met-C-mitophagy axis is modulated by microbial inputs, with B12 and methionine acting as proximal dietary signals. Our findings delineate a mechanistic framework through which RICTOR restrains host sensitivity to microbial-derived metabolites, thus maintaining mitochondrial homeostasis and regulating lifespan. This work reveals a pivotal role for RICTOR in insulating host physiology from environmental nutrient-driven perturbations by modulating organellar quality control pathways.
RICTOR regulates an interspecies crosstalk that influences longevity through a novel methionine cycle-mitophagy axis.
RICTOR 通过一种新型的甲硫氨酸循环-线粒体自噬轴调节物种间的相互作用,从而影响寿命
阅读:4
作者:Motwani Simran, Bhandari Somya, Chitkara Shivani, Ujjainiya Rajat, Sengupta Shantanu, Mukhopadhyay Arnab
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jul 14 |
| doi: | 10.1101/2025.07.11.664440 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
