Capturing the Onset of Bacterial Pulmonary Infection in Acini-On-Chips

在芯片上的腺泡细胞中捕捉细菌性肺部感染的发生

阅读:5
作者:Arbel Artzy-Schnirman, Hikaia Zidan, Shani Elias-Kirma, Lee Ben-Porat, Janna Tenenbaum-Katan, Patrick Carius, Ramy Fishler, Nicole Schneider-Daum, Claus-Michael Lehr, Josué Sznitman

Abstract

Bacterial invasion of the respiratory system leads to complex immune responses. In the deep alveolar regions, the first line of defense includes foremost the alveolar epithelium, the surfactant-rich liquid lining, and alveolar macrophages. Typical in vitro models come short of mimicking the complexity of the airway environment in the onset of airway infection; among others, they neither capture the relevant anatomical features nor the physiological flows innate of the acinar milieu. Here, novel microfluidic-based acini-on-chips that mimic more closely the native acinar airways at a true scale with an anatomically inspired, multigeneration alveolated tree are presented and an inhalation-like maneuver is delivered. Composed of human alveolar epithelial lentivirus immortalized cells and macrophages-like human THP-1 cells at an air-liquid interface, the models maintain critically an epithelial barrier with immune function. To demonstrate, the usability and versatility of the platforms, a realistic inhalation exposure assay mimicking bacterial infection is recapitulated, whereby the alveolar epithelium is exposed to lipopolysaccharides droplets directly aerosolized and the innate immune response is assessed by monitoring the secretion of IL8 cytokines. These efforts underscore the potential to deliver advanced in vitro biosystems that can provide new insights into drug screening as well as acute and subacute toxicity assays.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。