Mucus-coated, magnetically-propelled fecal surrogate to mimic fecal shear forces on colonic epithelium.

粘液包裹的、磁力推进的粪便替代物,用于模拟粪便对结肠上皮的剪切力

阅读:6
作者:Wang Alan S, Villegas-Novoa Cecilia, Wang Yuli, Sims Christopher E, Allbritton Nancy L
The relationship between the mechanical forces associated with bowel movement and colonic mucosal physiology is understudied. This is partly due to the limited availability of physiologically relevant fecal models that can exert these mechanical stimuli in in vitro colon models in a simple-to-implement manner. In this report, we created a mucus-coated fecal surrogate that was magnetically propelled to produce a controllable sweeping mechanical stimulation on primary intestinal epithelial cell monolayers. The mucus layer was derived from purified porcine stomach mucins, which were first modified with reactive vinyl sulfone (VS) groups followed by reaction with a thiol crosslinker (PEG-4SH) via a Michael addition click reaction. Formation of mucus hydrogel network was achieved at the optimal mixing ratio at 2.5 % w/v mucin-VS and 0.5 % w/v PEG-4SH. The artificial mucus layer possessed similar properties as the native mucus in terms of its storage modulus (66 Pa) and barrier function (resistance to penetration by 1-μm microbeads). This soft, but mechanically resilient mucus layer was covalently linked to a stiff fecal hydrogel surrogate (based on agarose and magnetic particles, with a storage modulus of 4600 Pa). The covalent bonding between the mucus and agarose ensured its stability in the subsequent fecal sliding movement when tested at travel distances as long as 203 m. The mucus layer served as a lubricant and protected epithelial cells from the moving fecal surrogate over a 1 h time without cell damage. To demonstrate its utility, this mucus-coated fecal surrogate was used to mechanically stimulate a fully differentiated, in vitro primary colon epithelium, and the physiological stimulated response of mucin-2 (MUC2), interleukin-8 (IL-8) and serotonin (5HT) secretion was quantified. Compared with a static control, mechanical stimulation caused a significant increase in MUC2 secretion into luminal compartment (6.4 × ), a small but significant increase in IL-8 secretion (2.5 × and 3.5 × , at both luminal and basal compartments, respectively), and no detectable alteration in 5HT secretion. This mucus-coated fecal surrogate is expected to be useful in in vitro colon organ-on-chips and microphysiological systems to facilitate the investigation of feces-induced mechanical stimulation on intestinal physiology and pathology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。