Sinorhizobium meliloti FcrX coordinates cell cycle and division during free-living growth and symbiosis by a ClpXP-dependent mechanism.

根瘤菌 FcrX 通过 ClpXP 依赖机制协调自由生活生长和共生过程中的细胞周期和分裂

阅读:4
作者:Dendene Sara, Xue Shuanghong, Mohammedi Roza, Vieillard Adam, Nicoud Quentin, Valette Odile, Frascella Angela, Bonnardel Anna, Le Bars Romain, Bourge Mickaël, Mergaert Peter, Brilli Matteo, Alunni Benoît, Biondi Emanuele G
Sinorhizobium meliloti is a soil bacterium that establishes a nitrogen-fixing symbiosis within root nodules of legumes. In this symbiosis, S. meliloti undergoes a drastic cellular change leading to a terminally differentiated form, called bacteroid, characterized by genome endoreduplication, increased cell size, and high membrane permeability. Bacterial cell cycle (mis)regulation is at the heart of this differentiation process. In free-living cells, the master regulator CtrA ensures the progression of cell cycle by activating cell division (controlled by FtsZ) and inhibiting DNA replication, while on the other hand the so far poorly unknown downregulation of CtrA and FtsZ is essential for bacteroid differentiation. Here, we combine cell biology, biochemistry, and bacterial genetics to understand the functions of FcrX, a factor that controls both CtrA and FtsZ in free-living growth and in symbiosis. Depletion of the essential gene fcrX led to abnormally high levels of FtsZ and CtrA and minicell formation. Using multiple complementary techniques, we showed that FcrX may interact with FtsZ and CtrA. Moreover, fcrX transcription is directly controlled by CtrA itself and the FcrX protein displays a cell cycle-dependent pattern. We showed further that FcrX also binds the degradosome complex ClpXP and its adaptors CpdR1 and RcdA, and that CtrA degradation efficiency depends on FcrX. We further showed that, despite weak homology with FliJ-like proteins, only FcrX proteins from closely related species are able to complement S. meliloti fcrX function. Finally, deregulation of FcrX showed abnormal symbiotic behaviors in plants suggesting a putative role of this factor during bacteroid differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。