Identification of immune-associated signatures and potential therapeutic targets for pulmonary arterial hypertension

识别肺动脉高压的免疫相关特征和潜在治疗靶点

阅读:5
作者:Xu He, Jiansong Fang, Mingli Gong, Juqi Zhang, Ran Xie, Dai Zhao, Yanlun Gu, Lingyue Ma, Xiaocong Pang, Yimin Cui

Abstract

Pulmonary arterial hypertension (PAH) comprises a heterogeneous group of diseases with diverse aetiologies. It is characterized by increased pulmonary arterial pressure and right ventricular (RV) failure without specific drugs for treatment. Emerging evidence suggests that inflammation and autoimmune disorders are common features across all PAH phenotypes. This provides a novel idea to explore the characteristics of immunological disorders in PAH and identify immune-related genes or biomarkers for specific anti-remodelling regimens. In this study, we integrated three gene expression profiles and performed Gene Ontology (GO) and KEGG pathway analysis. CIBERSORT was utilized to estimate the abundance of tissue-infiltrating immune cells in PAH. The PPI network and machine learning were constructed to identify immune-related hub genes and then evaluate the relationship between hub genes and differential immune cells using ImmucellAI. Additionally, we implemented molecular docking to screen potential small-molecule compounds based on the obtained genes. Our findings demonstrated the density and distribution of infiltrating CD4 T cells in PAH and identified four immune-related genes (ROCK2, ATHL1, HSP90AA1 and ACTR2) as potential targets. We also listed 20 promising molecules, including TDI01953, pemetrexed acid and radotinib, for PAH treatment. These results provide a promising avenue for further research into immunological disorders in PAH and potential novel therapeutic targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。