Distribution of PLGA-modified nanoparticles in 3D cell culture models of hypo-vascularized tumor tissue.

PLGA修饰纳米颗粒在低血管化肿瘤组织的3D细胞培养模型中的分布

阅读:4
作者:Sims Lee B, Huss Maya K, Frieboes Hermann B, Steinbach-Rankins Jill M
BACKGROUND: Advanced stage cancer treatments are often invasive and painful-typically comprised of surgery, chemotherapy, and/or radiation treatment. Low transport efficiency during systemic chemotherapy may require high chemotherapeutic doses to effectively target cancerous tissue, resulting in systemic toxicity. Nanotherapeutic platforms have been proposed as an alternative to more safely and effectively deliver therapeutic agents directly to tumor sites. However, cellular internalization and tumor penetration are often diametrically opposed, with limited access to tumor regions distal from vasculature, due to irregular tissue morphologies. To address these transport challenges, nanoparticles (NPs) are often surface-modified with ligands to enhance transport and longevity after localized or systemic administration. Here, we evaluate stealth polyethylene-glycol (PEG), cell-penetrating (MPG), and CPP-stealth (MPG/PEG) poly(lactic-co-glycolic-acid) (PLGA) NP co-treatment strategies in 3D cell culture representing hypo-vascularized tissue. RESULTS: Smaller, more regularly-shaped avascular tissue was generated using the hanging drop (HD) method, while more irregularly-shaped masses were formed with the liquid overlay (LO) technique. To compare NP distribution differences within the same type of tissue as a function of different cancer types, we selected HeLa, cervical epithelial adenocarcinoma cells; CaSki, cervical epidermoid carcinoma cells; and SiHa, grade II cervical squamous cell carcinoma cells. In HD tumors, enhanced distribution relative to unmodified NPs was measured for MPG and PEG NPs in HeLa, and for all modified NPs in SiHa spheroids. In LO tumors, the greatest distribution was observed for MPG and MPG/PEG NPs in HeLa, and for PEG and MPG/PEG NPs in SiHa spheroids. CONCLUSIONS: Pre-clinical evaluation of PLGA-modified NP distribution into hypo-vascularized tumor tissue may benefit from considering tissue morphology in addition to cancer type.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。