Oxidative stress induces a wide range of cellular damage, often causing disease and cell death. While many organisms are susceptible to the effects of oxidative stress, haloarchaea have adapted to be highly resistant. Several aspects of the haloarchaeal oxidative stress response have been characterized, however little is known about the impacts of oxidative stress at the translation level. Using the model archaeon Haloferax volcanii, we performed RNA-seq and ribosome profiling (Ribo-seq) to characterize the global translation landscape during oxidative stress. We identified 281 genes with differential translation efficiency (TE). Downregulated genes were enriched in ribosomal and translation proteins, in addition to peroxidases and genes involved in the TCA cycle. We also identified 42 small noncoding RNAs (sRNAs) with ribosome occupancy. Size distributions of ribosome footprints revealed distinct patterns for coding and noncoding genes, with 12 sRNAs matching the pattern of coding genes, and mass spectrometry confirming the presence of seven small proteins encoded in these sRNAs. However, the majority of sRNAs with ribosome occupancy had no evidence of coding potential. Of these ribosome-associated sRNAs, 12 had differential ribosome occupancy or TE during oxidative stress, suggesting that they may play a regulatory role during the oxidative stress response. Our findings on ribosomal regulation during oxidative stress, coupled with potential roles for ribosome-associated noncoding sRNAs and sRNA-derived small proteins in H. volcanii, revealed additional regulatory layers and underscore the multifaceted architecture of stress-responsive regulatory networks.
Investigation of the global translational response to oxidative stress in the model archaeon Haloferax volcanii reveals untranslated small RNAs with ribosome occupancy.
对模式古菌火山盐杆菌氧化应激的全球翻译反应的研究揭示了核糖体占据的非翻译小RNA
阅读:3
作者:Dallon Emma, Moran Haley M, Chidambaran Sadhana R, Kian Arman, Huang Betty Y H, Fried Stephen D, DiRuggiero Jocelyne
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jul 13 |
| doi: | 10.1101/2025.04.08.647799 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
