Enhanced Separation of Extracellular Vesicles Using Capillary Isotachophoresis With Spacer Compounds.

利用间隔化合物进行毛细管等速电泳增强细胞外囊泡的分离

阅读:5
作者:de Putter Milan Pieter Paul, Capuano Andrea, Numan Meia, Hankemeier Thomas, Shakalisava Yuliya
Extracellular vesicles (EVs) are pivotal in numerous physiological and pathological processes, such as immune responses, viral pathogenesis, pregnancy, cardiovascular diseases, and cancer progression. Their capacity to influence complex intracellular pathways highlights their therapeutic potential in addressing various conditions, including neurodegenerative diseases and cancer. A novel capillary isotachophoresis (cITP) method was developed for the electrokinetic characterization of pre-isolated EVs. Distinct peaks could be resolved at near-baseline resolution using a novel mixture of spacer ions and laser-induced fluorescence (LIF) detection. The vesicles were effectively separated from the unbound carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) amine-reactive fluorescent stain used to detect them and from residual contaminants. The identity of the peaks shown in the electropherograms was validated via various methods, including incubation with specific antibodies or spiking of putative contaminants, such as proteins and lipoproteins. This report thus provides a detailed proof-of-concept for using cITP-LIF for extracellular vesicle isolation, subtype fractionation, and profiling.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。