The Caenorhabditis elegans neuronal GPCR OCTR-1 modulates longevity responses to both warm and cold temperatures.

秀丽隐杆线虫神经元 GPCR OCTR-1 调节对冷热温度的寿命反应

阅读:5
作者:Wibisono Shawndra, Wibisono Phillip, Chen Chia-Hui, Sun Jingru, Liu Yiyong
Many animal species live longer in cold climates than in warm climates, which was traditionally explained using the rate of living theory, i.e., higher temperatures increase chemical reaction rates, thus speeding up the aging process. However, recent studies have identified specific molecules and cells that are involved in longevity responses to temperature, indicating that such responses are not simply thermodynamic but are regulated processes. Here, we report that Caenorhabditis elegans lacking the neuronal G protein-coupled receptor OCTR-1 have extended lifespans at a warm temperature but shortened lifespans at a cold temperature, demonstrating that OCTR-1 modulates temperature-induced longevity responses. These responses are regulated by the OCTR-1-expressing, chemosensory ASH neurons. Furthermore, the OCTR-1 pathway controls such responses to warm and cold temperatures by regulating the expressions of immune response genes and the intestinal transcriptional factor ELT-2, respectively. Overall, our study provides cellular and molecular insights into the relationship between temperature and longevity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。