An intermembrane space protein facilitates completion of mitochondrial division in yeast.

膜间隙蛋白促进酵母线粒体分裂的完成

阅读:4
作者:Connor Olivia M, Matta Srujan K, Friedman Jonathan R
Mitochondria are highly dynamic double membrane-bound organelles that maintain their shape in part through fission and fusion. Mitochondrial fission is performed by the dynamin-related protein Dnm1 (Drp1 in humans), a large GTPase that constricts and divides the mitochondria in a GTP hydrolysis-dependent manner. However, it is unclear whether factors inside mitochondria help coordinate the process and if Dnm1/Drp1 activity alone is sufficient to complete fission of both mitochondrial membranes. Here, we identify an intermembrane space protein required for mitochondrial fission in yeast, which we propose to name Mdi1. Loss of Mdi1 leads to hyper-fused mitochondria networks due to defects in mitochondrial fission, but not lack of Dnm1 recruitment to mitochondria. Mdi1 plays a conserved role in fungal species and its homologs contain a putative amphipathic α-helix, mutations in which disrupt mitochondrial morphology. One model to explain these findings is that Mdi1 associates with and distorts the mitochondrial inner membrane to enable Dnm1 to robustly complete fission. Our work reveals that Dnm1 cannot efficiently divide mitochondria without the coordinated function of a protein that resides inside mitochondria.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。