Due to population growth and climate changes, there is a rising need for alternative food and protein sources to reduce protein scarcity and the environmental impact of food industries. Single-cell proteins (SCPs) have the potential to partially or fully substitute plant- and animal-derived dietary proteins. Bacillus subtilis is an appealing bacterium for SCP production because of its fast growth and ability to obtain high protein and essential amino acid (AA) content in its biomass. It is also capable of utilizing a wide range of substrates. B. subtilis attractiveness and efficiency can be further enhanced using mutagenesis. In this study, a novel approach to creating mutant strains with enhanced protein and AA content was experimentally validated. The method is based on the application of AA inhibitors for selective pressure to ensure the growth of mutants with enhanced protein and/or AA synthesis capacity. For AA inhibitors, three herbicides were used: glufosinate-ammonium (GA), L-methionine sulfoximine (MSO), and S-(2-aminoethyl)-L-cysteine (AEC). Initially, AA inhibitor doses for the complete inhibition of wild-type (WT) B. subtilis strain were determined. Then, B. subtilis was treated with EMS chemical mutagen and created mutants were cultivated on a medium containing inhibitory dose of AA inhibitors. Growing samples were selected, analyzed, and compared. The optimal inhibitory concentrations of herbicides for mutant selection were 0.05-0.4âM for GA, 0.01-0.05âM for MSO, and 0.2âM for AEC. The best-performing mutants were selected when using GA-improvement of 7.1 times higher biomass content, 1.5 times higher protein concentration, 1.2 times higher AA content, and 1.2 times higher essential AA index was achieved in comparison with WT B. subtilis. Enhanced mutants were also successfully selected when using MSO and AEC. This study demonstrates the potential of using AA inhibitors for the selection of mutants with improved protein and AA profiles.
Creating Single-Cell Protein-Producing Bacillus subtilis Mutants Using Chemical Mutagen and Amino Acid Inhibitors.
利用化学诱变剂和氨基酸抑制剂构建单细胞蛋白质生产枯草芽孢杆菌突变体
阅读:4
作者:Berzina Indra, Kalnins Martins, Geiba Zane, Raita Svetlana, Palcevska Jelizaveta, Mika Taras, Spalvins Kriss
| 期刊: | Scientifica | 影响因子: | 3.100 |
| 时间: | 2024 | 起止号: | 2024 Nov 29; 2024:8968295 |
| doi: | 10.1155/sci5/8968295 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
