Poroviscoelasto-plasticity of agarose-based hydrogels.

琼脂糖基水凝胶的多孔粘弹塑性

阅读:3
作者:Crespo-Cuevas Victor, Ferguson Virginia L, Vernerey Franck
Agarose gels are excellent candidates for tissue engineering as they are tunable, viscoelastic, and show a pronounced strain-stiffening response. These characteristics make them ideal to create in vitro environments to grow cells and develop tissues. As in many other biopolymers, viscoelasticity and poroelasticity coexist as time-dependent behaviors in agarose gels. While the viscoelastic behavior of these hydrogels has been considered using both phenomenological and continuum models, there remains a lack of connection between the underlying physics and the macroscopic material response. Through a finite element analysis and complimentary experiments, we evaluated the complex time-dependent mechanical response of agarose gels in various conditions. We then conceptualized these gels as a dynamic network where the global dissociation/association rate of intermolecular bonds is described as a combination of a fast rate native to double helices forming between aligned agarose molecules and a slow rate of the agarose molecules present in the clusters. Using the foundation of the transient network theory, we developed a physics-based constitutive model that accurately describes agarose behavior. Integrating experimental results and model prediction, we demonstrated that the fast dissociation/association rate follows a nonlinear force-dependent response, whose exponential evolution agrees with Eyring's model based on the transition state theory. Overall, our results establish a more accurate understanding of the time-dependent mechanics of agarose gels and provide a model that can inform design of a variety of biopolymers with a similar network topology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。