Impact of Black Soldier Fly Larvae Oil on Immunometabolic Processes.

黑水虻幼虫油对免疫代谢过程的影响

阅读:4
作者:Richter Hadas Inbart, Gover Ofer, Hamburg Amit, Bendalak Keren, Ziv Tamar, Schwartz Betty
The oil extract derived from black soldier fly (Hermetia illucens) larvae (BSFL) is characterized by a distinctive fatty acid composition and bioactive compounds with demonstrated anti-inflammatory properties, as shown in our previous work. The present study aims to mechanistically explore the immunomodulatory effects of a saponified form of BSFL oil (MBSFL) and its potential interaction with metabolic signaling pathways. Using Pam3CSK4-polarized M1 primary human peripheral blood mononuclear cells (PBMCs), we demonstrate that MBSFL phenotypically suppressed the secretion of pro-inflammatory cytokines TNFα, IL-6, IL-17, and GM-CSF (p < 0.01) without altering anti-inflammatory cytokine levels (TGFβ1, IL-13, and IL-4). A phosphoproteomic analysis of Pam3CSK4-stimulated THP-1 macrophages revealed MBSFL-mediated downregulation of CK2 and ERK kinases (p < 0.05), key regulators of NF-κB signaling activation. We confirmed that MBSFL directly inhibits NF-κB p65 nuclear translocation (p < 0.05), using both immunofluorescence staining and a western blot analysis of nuclear and cytoplasmic fractions. In the context of metabolism, using a luciferase reporter assay, we demonstrate that MBSFL functions as a weak agonist of PPARγ and PPARδ (p < 0.05), which are nuclear receptors involved in lipid metabolism and immune regulation. However, subsequent immunoblotting revealed a macrophage polarization-dependent regulation: MBSFL upregulated PPARγ in M0 macrophages but did not prevent its suppression upon Pam3CSK4 stimulation, whereas it specifically enhanced PPARδ expression during M1 polarization (p < 0.05). This study provides novel experimental evidence supporting our hypothesis of MBSFL's role in immunometabolism. We demonstrate for the first time that MBSFL acts as a dual regulator by suppressing NF-κB-mediated inflammation while promoting PPARδ activity-an inverse relationship with potential relevance to immunometabolic disorders.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。