A novel senotherapeutic strategy with azithromycin for preventing endometriosis progression.

一种利用阿奇霉素预防子宫内膜异位症进展的新型治疗策略

阅读:8
作者:Sonehara Reina, Nakamura Tomoko, Takeda Takehiko, Kaseki Satoshi, Seki Tomomi, Tanaka Hideaki, Yabuki Atsushi, Miyake Natsuki, Muraoka Ayako, Osuka Satoko, Iwase Akira, Kajiyama Hiroaki
BACKGROUND: Endometriosis is an estrogen-dependent chronic inflammatory disease, however the mechanisms underlying inflammation remain unclear. Non-hormonal drugs that can prevent endometriosis progression and resolve endometriotic infertility are urgently required. We thus focused on cellular senescence as a novel feature of endometriosis. Senescent cells cause chronic inflammation via the senescence-associated secretory phenotype (SASP) factor. It has been reported the effects of senolysis for various diseases in recent years. The aim of this study was to validate the involvement of cellular senescence in endometriosis and as the effects of senolytic drug to develop a novel non-hormonal therapeutic strategy for endometriosis. METHODS: The senescence markers were assessed by morphological features and semiquantitative immunofluorescence staining (senescence-associated b-galactosidase [SA-b-Gal], the cyclin-dependent kinase inhibitor 2 A locus [p16(INK4a)], and laminB1) to compare among cell types (normal endometrial stromal cells [nESCs], endometrial stromal cells with endometriosis [eESCs], and ovarian endometriosis [OE] cyst-derived stromal cells [CSCs]). Expression of SASP markers was examined in cell culture supernatants using a cytokine array. In addition, the effects of senolytic drugs (azithromycin [AZM] and navitoclax [ABT263]) on endometriosis were evaluated in vitro and in vivo. The in vivo study used the endometriosis mice model. RESULTS: CSCs exhibited stronger senescence markers. Semi-quantitative SA-β-Gal and p16(INK4a) staining intensities were significantly increased, and that of LaminB1 was decreased in CSCs compared to those in nESCs and eESCs (SA-b-Gal, P < 0.001; p16(INK4a), P < 0.05; LaminB1, P < 0.05). Cytokine array analysis revealed elevated SASP-related cytokine levels, including interleukin-6 (IL-6), in CSC supernatants compared to those in nESCs. AZM and ABT263 reduced the viable fraction in CSCs (AZM: P < 0.001, ABT263: P < 0.01). Furthermore, AZM suppressed IL-6 expression in CSC culture supernatants (P < 0.05). In murine model, AZM administration reduced endometriotic lesion volume compared to that in vehicle (P < 0.05). Proliferative activity, IL-6 expression levels, and fibrosis within endometriotic lesions also decreased (Ki67, P < 0.01; IL-6, P < 0.001; fibrosis, P < 0.001). CONCLUSIONS: Our findings show that cellular senescence is involved in the pathogenesis of endometriosis and that AZM may be useful for preventing endometriosis progression by suppressing the secretion of IL-6 as a SASP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。