Cancer chemotherapy-induced neuropathic pain is a devastating pain syndrome without effective therapies. We previously reported that rats deficient in complement C3, the central component of complement activation cascade, showed a reduced degree of paclitaxel-induced mechanical allodynia (PIMA), suggesting that complement is integrally involved in the pathogenesis of this model. However, the underlying mechanism was unclear. Complement activation leads to the production of C3a, which mediates inflammation through its receptor C3aR1. In this article, we report that the administration of paclitaxel induced a significantly higher expression level of C3aR1 on dorsal root ganglion (DRG) macrophages and expansion of these macrophages in DRGs in wild-type (WT) compared with in C3aR1 knockout (KO) mice. We also found that paclitaxel induced less severe PIMA, along with a reduced DRG expression of transient receptor potential channels of the vanilloid subtype 4 (TRPV4), an essential mediator for PIMA, in C3aR1 KO than in WT mice. Treating WT mice or rats with a C3aR1 antagonist markedly attenuated PIMA in association with downregulated DRG TRPV4 expression, reduced DRG macrophages expansion, suppressed DRG neuron hyperexcitability, and alleviated peripheral intraepidermal nerve fiber loss. Administration of C3aR1 antagonist to TRPV4 KO mice further protected them from PIMA. These results suggest that complement regulates PIMA development through C3aR1 to upregulate TRPV4 on DRG neurons and promote DRG macrophage expansion. Targeting C3aR1 could be a novel therapeutic approach to alleviate this debilitating pain syndrome.
Complement Receptor C3aR1 Contributes to Paclitaxel-Induced Peripheral Neuropathic Pain in Mice and Rats.
补体受体 C3aR1 可导致小鼠和大鼠出现紫杉醇诱导的周围神经病理性疼痛
阅读:7
作者:Xu Jijun, Huang Ping, Bie Bihua, Dai Yang, Ben-Salem Salma, Borjini Nozha, Zhang Lingjun, Chen Jin, Olman Mitchell, Cheng Jianguo, Lin Feng
| 期刊: | Journal of Immunology | 影响因子: | 3.400 |
| 时间: | 2023 | 起止号: | 2023 Dec 1; 211(11):1736-1746 |
| doi: | 10.4049/jimmunol.2300252 | 种属: | Rat |
| 研究方向: | 神经科学 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
