Nannochloris sp. JB17 as a Potential Microalga for Carbon Capture and Utilization Bio-Systems: Growth and Biochemical Composition Under High Bicarbonate Concentrations in Fresh and Sea Water.

Nannochloris sp. JB17 作为一种潜在的碳捕获和利用生物系统微藻:在淡水和海水中高碳酸氢盐浓度下的生长和生化组成

阅读:10
作者:Markou Giorgos, Kougia Eleni, Arapoglou Dimitris
Nannochloris sp. JB17 has been identified as an interesting microalgal species that can tolerate high salinity and high bicarbonate concentrations. In this study, Nannochloris sp. JB17 was long-term adapted to increased bicarbonate concentrations (10-60 g NaHCO(3) per L) in fresh or sea-water-based growing media. This study aimed to evaluate its growth performance and biochemical composition under different cultivation conditions. The highest biomass production (1.24-1.3 g/L) achieved in the study was obtained in fresh water media supplemented with 40 g/L and 60 g/L NaHCO(3), respectively. Total protein content fluctuated at similar levels among the different treatments (32.4-38.5%), displaying good essential amino acids indices of 0.85-1.02, but with low in vitro protein digestibility (15-20%) rates. Total lipids did not show any significant alteration among the different NaHCO(3) concentrations in both fresh and sea water (12.6-13.3%) but at increased sodium strength, a significant increase in unsaturated lipids and in particular a-linolenic acid (C18:3) and linoleic acid (C18:2) was observed. Carbohydrate content also ranged at very similar levels among the cultures (26-30.9%). The main fraction of carbohydrates was in the type of neutral sugars ranging from around 72% to 80% (of total carbohydrates), while uronic acids were in negligible amounts. Moreover, Nannochloris sp. showed that it contained around 8-9% sulfated polysaccharides. Since the microalgae display good growth patterns at high bicarbonate concentrations, they could be a potential species for microalgal-based carbon capture and utilization systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。