High-grade serous ovarian carcinoma (HGSOC) is the deadliest gynecologic cancer. Key to the progression and ultimate lethality of this subtype is the intra-tumoral heterogeneity, which is defined as the coexistence of different cell types and populations within a single tumor. Among those, ovarian cancer stem cells (OCSCs) are a distinct subpopulation of tumor cells endowed with stem-like properties, which can survive current standard therapies, resulting in tumor recurrence. Here, we generated ex vivo primary OCSC-enriched three-dimensional (3D) spheres from 10 distinct treatment naive patient-derived adherent (2D) cultures. We used state-of-the-art quantitative mass spectrometry to characterize the molecular events associated with OCSCs by analyzing their proteome and phosphoproteome. Our data revealed a stemness-related protein signature, shared within a heterogeneous patient cohort, which correlates with chemo-refractoriness in a clinical proteomics dataset. Moreover, we identified targetable deregulated kinases and aberrant PDGF receptor activation in OCSCs. Pharmacological inhibition of PDGFR in adherent OC cells reduced the stemness potential, measured by sphere formation assay. Overall, we provide a valuable resource to identify new OCSC markers and putative targets for OCSC-directed therapies.
Quantitative Proteomics and Phosphoproteomics Analysis of Patient-Derived Ovarian Cancer Stem Cells.
患者来源卵巢癌干细胞的定量蛋白质组学和磷酸化蛋白质组学分析
阅读:4
作者:Franciosa Giulia, Nieddu Valentina, Battistini Chiara, Caffarini Miriam, Lupia Michela, Colombo Nicoletta, Fusco Nicola, Olsen Jesper V, Cavallaro Ugo
| 期刊: | Molecular & Cellular Proteomics | 影响因子: | 5.500 |
| 时间: | 2025 | 起止号: | 2025 May;24(5):100965 |
| doi: | 10.1016/j.mcpro.2025.100965 | 研究方向: | 发育与干细胞、细胞生物学 |
| 疾病类型: | 卵巢癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
