One exercise session can increase subsequent insulin-stimulated glucose uptake (ISGU) by skeletal muscle in both sexes. We recently found that muscle expression and phosphorylation of key sites of Akt substrate of 160âkDa (AS160; also called TBC1D4) are essential for the full-exercise effect on postexercise-ISGU (PEX-ISGU) in male rats. In striking contrast, AS160's role in increased PEX-ISGU has not been rigorously tested in females. Our rationale was to address this major knowledge gap. Wild-type (WT) and AS160-knockout (KO) rats were either sedentary or acutely exercised. Adeno-associated virus (AAV) vectors were engineered to express either WT-AS160 or AS160 mutated on key serine and threonine residues (Ser588, Thr642, and Ser704) to alanine to prevent their phosphorylation. AAV vectors were delivered to the muscle of AS160-KO rats to determine if WT-AS160 or phosphorylation-inactivated AS160 would influence PEX-ISGU. AS160-KO rats have lower skeletal muscle abundance of the GLUT4 glucose transporter protein. This GLUT4 deficit was rescued using AAV delivery of GLUT4 to determine if eliminating muscle GLUT4 deficiency would normalize PEX-ISGU. The novel results were as follows: (1) AS160 expression was required for greater PEX-ISGU; (2) rescuing muscle AS160 expression in AS160-KO rats restored elevated PEX-ISGU; (3) AS160's essential role for the postexercise increase in ISGU was not attributable to reduced muscle GLUT4 content; and (4) AS160 phosphorylation on Ser588, Thr642, and Ser704 was not essential for greater PEX-ISGU. In conclusion, these novel findings revealed that three phosphosites widely proposed to influence PEX-ISGU are not required for this important outcome in female rats.
AS160 expression, but not AS160 Serine-588, Threonine-642, and Serine-704 phosphorylation, is essential for elevated insulin-stimulated glucose uptake by skeletal muscle from female rats after acute exercise.
AS160 的表达,而不是 AS160 丝氨酸-588、苏氨酸-642 和丝氨酸-704 的磷酸化,对于雌性大鼠急性运动后骨骼肌胰岛素刺激的葡萄糖摄取增加至关重要
阅读:5
作者:Wang Haiyan, Zheng Amy, Arias Edward B, Kwak Seong Eun, Pan Xiufang, Duan Dongsheng, Cartee Gregory D
| 期刊: | FASEB Journal | 影响因子: | 4.200 |
| 时间: | 2023 | 起止号: | 2023 Jul;37(7):e23021 |
| doi: | 10.1096/fj.202300282RR | 种属: | Rat |
| 研究方向: | 代谢 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
